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ABSTRACT

In this paper, we seek to control crime at its minimal level during festive periods such as Christmas,
Valentine’s day and entertainment events such as music awards. We used epidemiological-borrowed con-
cepts to understand and model the dynamics of crime during these periods. We analyze the fundamental
properties of the model, compute the crime basic reproduction number, Ry, using the next generation
matrix approach and use the output to establish the steady states of the model. The crime-free steady
state is found to be locally stable whenever Ry < 1. The center manifold theorem is used to show the
existence of bifurcation at Ry = 1. The model is then transformed into an optimal control problem with
three control interventions (education, detention and sacking) to obtain the best strategy to control crime
at its minimum level. The control reproduction number was determined to show scenarios when the im-
plementation of the controls give an Ry < 1 or Ry > 1. Moreover, numerical simulations are carried out to
affirm the theoretical properties of the model. From the simulations, education is observed to be the best
single strategy to apply but, alternatively, incorporating two or more control interventions equally give a
better result. Finally, cost effectiveness analysis was employed on the control strategies and it shows that

education and sacking are the most cost-effective strategies to minimise crime during events.

© 2021 Elsevier Ltd. All rights reserved.

1. Introduction

Entertainment events during holidays, festive occasions (such as
Christmas, Valentine days etc.) are periods that raise problems for
the general public since criminals see these periods as a chance
to commit criminal offences. According to [1], three key elements
that constitute a crime; crime as a criminal act (an unlawful bod-
ily movement where the defendant voluntarily act in a way that
poses a considerable threat of personal injury or injury to others),
2crime is taken into account as an omission of acts when some-
one fails to perform a duty by law and 3crime as a criminal intent
where criminal acts are administered with a culpable mind. Thus,
the European Union Statistics put crime in six categories which re-
flect the range of policy and legal systems, that is homicide, violent
crime, robbery, domestic burglary, theft and drug trafficking [2].

Crime has been widely studied as a serious sociological prob-
lem that has been interpreted as bad conduct within the pre-
scientific period and supported as an ethical or philosophical
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dimension like a violation of discretion. This age of reasoning
emerged in the 1650s to 1800s as exemplified by a priority for
human rights leading to its study in the humanities, philoso-
phy, mathematics and other sciences. The economic revolution,
however, brought more conventional thought and reform-oriented
criminology like classical school seen within the Progressive Era.
Cesare Lombroso (1835-1909), the psychiatrist who is recognised
as the father of forensic science is indelibly marked as the pio-
neer for the origin and course of theories about biological criminal
activities [3]. Within the late 1990s and early 2000s, a revival of
biosocial ideas as criminal acts have been experienced and viewed
as a results of biological factors interacting with each other within
the past and present environments [4,5]. Additionally, the interac-
tion between genes and therefore the environment relatively af-
fects anti-social behaviour and shared environmental factors like
family crime, poverty, poor parenting which have a significant ef-
fect on an individual committing a criminal offence, particularly a
non-aggressive offence [5]. But, early health risk factors like mild
physical anomalies, exposure to nicotine or alcohol and complica-
tions at birth combined with environmental risk factors are also
seen to be predisposed to crime [5,6].
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Consistent with routine activity (RA) theory, different types of
holiday periods have their associated dominant crime [7]. It has
been found that major holidays were highly related to expressive
crimes. As an example, sexual abuse increases during Valentine’s
Day and theft cases rise around the Christmas Season as well as
entertainment events. This is confirmed by the RA which suggested
that major holidays or festive periods were more likely to influence
and alter the standard daily activities of people as well as bring-
ing family and friends together in an environment. These gath-
erings are mostly related to a high level of alcohol consumption
and could increase the propensity of one committing a criminal of-
fence. Consistent with National Insurance Crime Bureau (NICB) re-
port in 2018, the subsequent number of daily theft cases that were
recorded within the various holidays in the USA are as follows;
New Year Day (2571), President Day (2380), Halloween (2275),
Labour Day (2235), Memorial Day (2167), Valentine Day (2001) and
Christmas Day (1912). Crime does not only affect economic produc-
tivity but it has a diverse effect on the nation as well. Controlling
crime considers the very fact that crime may happen at any event
or festive period. Hence, it is necessary to reduce crime by keeping
it at a minimal level to avoid it escalating [8].

In the study and analysis of crime, some mathematical mod-
els have been used. A population-based epidemiological approach
was utilized in modelling crime, where it was believed that crime
would spread through social interaction [9]. Stanford researchers,
Berestycki et al. [10], used a reaction-diffusion-advection model to
explain and reduce the spread of crime waves from crime hotspots.
Criminal behaviours and violence can also be treated as a so-
cially communicable disease using epidemiological-borrowed con-
cepts [9,11]. These studies recognized the propensity of violent acts
to cluster, spread and mutate from one area to another and based
on using existing mathematical epidemiology techniques they have
been able to treat the spread of violence in a population [11].

A similar model for gang growth in a population was de-
veloped by dividing the population into four distinct categories
based on gang affiliation and risk factors for gang membership in
Sooknanan et al. [12]. Their model analyzed the effect of varying
crime-fighting approaches by adjusting parameter values like im-
prisonment and recurrence levels. They equally establish bifurca-
tion points that resulted in gang members disappearing from the
community. Furthermore, Saldana et al. [13] presented a nonlin-
ear model of urban burglar dynamics which takes into consider-
ation the police deterrent effect. The predator-prey approach was
used where houses served as prey and burglars as predators. Their
model focuses on the timing of criminal incidents, the spatial dis-
tribution of burglaries and population patterns supported by age.
The burglars’ tendency to commit a criminal offence and the pace
at which houses were burgled were analyzed using repeat pat-
terns of victimization. The asymptotic essence of the model to-
gether with the presence of global equilibrium stability was ob-
tained through a continuous re-scaling of variable time. However,
it is assumed in their model that the nature and structure of the
houses might be an element that influences the speed at which
these houses are going to be burgled but this factor was not con-
sidered.

Also, Raimundo et al. [14] examined how criminal behaviours
are often contained and treated using Partially Contagious Crim-
inality Model (PCCM). Their model include social, economic, per-
sonal and peer-pressure that determined the likelihood that a sus-
ceptible person with criminal propensity will engage in a criminal
career. Their model further include individuals who have a criminal
propensity but have never been imprisoned, individuals who are
vulnerable to criminal activity and once jailed and those who are
jailed several times. The jailed population were; first-timers and
multiple times jailed at a given time. Lastly, those who have the
propensity to commit a criminal offence but abstained from it ei-
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ther by their efforts or early interventions and those who are jailed
for the primary time or several times but are relieved of criminal
behaviours were captured. In their findings, there was an endemic
equilibrium of criminality even when the essential reproduction
number for contagion is below unity.

From the models reviewed, it is observed that building a crime
model involves a multidisciplinary approach to bridging the gap
between the physical and social sciences. The perfect sort of labour
division in quantitative social science would be one where the
sociologist would formulate a theory, mathematician translates it
into a mathematical model, statistician vides the models to exhibit
the parameters and computer scientist performs numerical simu-
lations [15]. Thus, in this paper we develop a model that seek to
control crime during entertainment events or festive periods using
mathematical techniques.

The rest of the paper is organised as follows. In Section 2, the
model is formulated and the analysis of the model is presented in
Section 3. In Section 4, the optimal control equations are devel-
oped and analysed together with the numerical simulations. The
section further accounts for the associated cost of controlling the
crime. Concluding remarks are described in Section 5.

2. Model formulation

In this section, the formulation of the crime transmission model
is made and it classifies the total population of individual in the
society T into four compartments depending on an individual’'s
criminal (infection) status. Compartment labeled S, represent the
susceptible individuals in the population, N denotes individuals
with the intention to commit crime, I account for infected (active
criminals) individuals and R shows those who have recovered from
criminal activities. Hence the total population is given by,

T = S(t) + N(t) + 1(t) + R(t).

In the model, the influx of individuals are recruited into the
event at a rate given by uT. The parameter ¢ is the rate at which
individuals who are recruited into the susceptible population have
the intention to commit crime. Therefore, individuals with the in-
tention to commit crime move from the susceptible compartment
to compartment N. The susceptible and individuals with the in-
tention to commit crime become criminal at the transmission rate
B and B(1 —6), where 6 is the modification of the behaviour of
those having the intention to commit crime. Thus, if the value for
6 =1, then it implies that there is a positive modification of their
behaviour. But if & =0, then there is a full transmission from N
compartment to the I compartment. We further make the assump-
tion that individuals who are criminals recover through the desis-
tance rate given by £. The desistance rate is a function of the du-
ration (d > 0) of the programme and the number of infected indi-
viduals (I) at time t. The desistance function & (d,I), is given by

§@d.D) = [50 + (& - 50)%_”]1,

where &, represents the minimum per capital desistance rate and
&1 is the maximum desistance rate such that & > &; > 0. The func-
tion £(d,I) investigates the impact of the duration of the pro-
gramme on the spread and control of crime. The constant popula-
tion under consideration in the model is further assumed to have
a natural exit rate given by . A schematic representation of the
above model is shown in Fig. 1 and it associated state variables
and parameters are described in Table 1.

3. Model dynamics

The following set of non-linear ordinary differential equations
are obtained from the assumptions and flow diagram described in
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Fig. 1. Schematic figure of crime infection model.

Table 1
Description of parameters in the model.

State variables  Description

S susceptible individuals

N individuals with intention to commit crime

1 active criminals

R individuals stopping crime on their own

T total number of individuals in the society

Parameters Description

B transmission rate

n rate at which individual exit from an event

[ rate at which individual with the intention to commit crime
% efficacy rate

duration or length of an event
desistance rate

maximum desistance rate
minimum per capita desistance rate

Jre e v Q.

=3

Section 2 as;

$=MT—MS—@ — ¢S,
N=¢S—1(1-6)—pN,
f=E8+ B (1 -0) - pl-&(d.T),
R=§£(d.]I) - iR,

where the dots on each variables (S, N, I, R) denote the first deriva-
tive with respect to time t. The initial conditions are such that
S(0) >0, N(0)>0, I(0) >0, R(0)>0. From model (1), we ob-
serve that the dimension of human population is not the same as
the length of the programme. As a result, to make the system di-
mensionless, we apply the dimensionless technique and make the
following substitutions such that; S=sT, N=nT, I =iT, R=1T
and d = dT with s+ n+i+r = 1. The new system of equations be-
comes;

§ =L — us — Bsi— ¢s,
n=¢s— (1 —0)ni— un,

= i+ B(1 - Omi - i~ [£0+ (51— 80) £ ] @
F= [50 + (& - go)d%]i — U

(1)

3.1. Well-posedness of the model

In this section, we illustrate that model (2) is sociologically and
mathematically well defined in the positive invariant domain given

as
Q={(s+n+i+r)eR? <1}.

Lemma 1 (Positively invariant set). The region Q2 with initial con-
ditions (s(0) >0, n(0) >0, i(0)>0, r(0)>0) for all tp >0 is
bounded, positively invariant and attracting with respect to the model

2).

Proof. We define

to=sup{t>0:s(t)>0 and (n(t), i(t), r(t)) = 0}.
Thus,

s(t) >0 and n(t), i(t), r(t) =0 Vte]0,ty).
Considering the first equation in the model (2) we have:

ds .
ar = K mus = Bsi— s,

> —(u+pBi+g)s. tel0.to).
By separation of variables, we have
ds .
< =z —(u+pi+ gt

Now integrating both sides from 0 to t; yields;

/Ot"@zfo"’—w+ﬁi+¢>dt.

S
Hence we have
S(ty) = s(0ye” (om0 g

From the second equation in model (2), we can write;

= pa-o)i-wn telo.t).

By separation of variables we have;

M B -0~ it

Integrating both sides from 0 to t; gives;

to dn to .
/0 - 2/0 (—,B(l —9)1—,14)dt,
to
In(n(ty)) = —pato — /0 (B(1 - 0)i)d.
Therefore,

n(to) = n(O)e(‘ﬂfo—fé"<ﬁ<1—9>i>dc) -0
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In a similar manner, the following solutions are respectively ob-
tained for the third and fourth equation in model (2),

i(ty) > i(o)ef(;w(&féu)tf/(tﬂi))tn >0
and
r(tg) = r(0)e # > 0.

Therefore, s(t) >0, n(t) >0, i(t) >0, and
t>0. O

r(t) >0 for all time

3.2. Steady states and basic reproduction number

We obtain two non-negative equilibrium points which are
crime-free equilibrium (CFE) and crime endemic equilibrium (CEE).
We obtain the crime-free equilibrium points as;

CFE = (%, n%, %, 19) = (L % o).
H+¢ 1+

3.2.1. Basic reproduction number

The basic reproduction number, Ry, of model (2) is defined as
a threshold parameter that measures the average number of new
criminals produced by the relapse and interaction of the criminal
population with the susceptible population [16]. Using the concept
in [17], the basic reproduction number is obtained as

Ry = Bln+o(-0))
E+m)(u+o)’

3.3. Local stability of CFE
In this section, we investigate the stability analysis of the
crime-free equilibrium by proving the following theorem.

Theorem 1. The crime-free equilibrium, CFE, is locally asymptotically
stable if Ry < 1, otherwise model (2) is unstable.

Proof. The Jacobian matrix for model (2) at CFE is given by

A B
J(CFE) = |:C Di|, 3)
where
B
A=<_“_¢ 0), B=<_ﬂ51>“<§b§> 0>,
¢ K ) 0
0 O yol 0

C= , D= ,

(60} o-(%& )
and

_(_Br Bp(1-0)
p= ((/t+¢> —n-&i+ (1+@) )

The eigenvalues for Eq. (3) are given by the diagonal entries of the

lower triangular of matrix A and D. We therefore deduce that the
four eigenvalues are:

o The first and second eigenvalues are given by —u < 0.
o The third eigenvalue is given by —(u + ¢) < 0.
o The fourth eigenvalue is given by p.

The condition for the fourth eigenvalue to be negative is such
that

Bu+¢(1-0))
w+¢
which simplifies to

Ry BlLto-6)
(n+ )&+ 1)

Therefore, the crime-free equilibrium steady state is locally-

asymptotically stable for Ry < 1. O

o= - (u+§&) <0,
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3.4. Crime endemic equilibrium (CEE)
To find the endemic equilibrium we equate the derivatives of

model (2) to zero such that (s* #0, n* #0, i*#0, r*#0) to ob-
tain

0= w— I‘LS* _ IBS*I* _ ¢S*, (4)
0=¢s — B(1 - O)n*i* — un*, (3)
0 = Bs*i* + B(1 — O)n*i* — ui* — £(d, i*), (6)
0=E&(d,i*) — ure, (7)
where 7(d, i*) = [§0+ (& —Eo)fﬁ] and £(d, i*) = n(d, i*)i*. The
endemic equilibrium point for the state variables obtain as

o H
S(l)_iﬂi*+u+¢’ (8)

. neo

N=—— _ , 9
") = BEA-0 BT T D) ©)
ity = ol + 1)

(d+mu

0=[Bs+ B0 -6)n—n(d i) - pli (10)
From Eq. (10) we have,
0=pBs+B(1-n-nd,i*) - u. (11)
which is equal to
(&1 — o) =2 = s+ B(1—O)n — o, (12)

d+i*

d(&1— &) = (d+)[Bs+B(1 —0)n— p —&]. (13)
From Egs. (8) and (9) we let;

i) = P i) = %2
s(i*) = v n(i*) = an

where w; =pu, Y=8*+u+¢, wy=pp, Y,=p01-0)i"+
. Multiplying Eq. (13) by Y; and Y, gives

d& —&)V1Ya = (d+)[Bs + B1 - ' — u —ElYiYa.  (14)
Moreover,
(d+i)[BuYs + B —0)ug] — (d +i*) (1 + &IV Y2
=J(51 —&)Y1Ys. (15)
Eq. (15) is a polynomial of the form;
p3(i*) = a3i* + ayi*? + aqi* + ag, (16)
where;
a = —[(@0 — pu— §)B + (1 + &) (i + ) ldp,
a = —dp (@ - D+ 111+ 6 -2)d)u’
+(@+80 — ¢ —26:1d - $(0 - D],
+dp&1(0 — 1) — (i +Eo) (1 + B)].
a = [(d-Dp+d&) O - 1B+ (0 -2)p
+B(0 1) (1 +&)]B.
a3 = —B%2(1-0)(n+&).
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Further simplification and algebraic manipulation, we have;

ao = (Ro— (1 + @) (u + &d,
= (1 -0) — Bl(d - Hp? + d&
+(1-0)du? + (1 -0)[($ + & — d& 9]

— (i +&) (1 + ).

@ =B -0)[B- D+ BdEr + (u+d) (i + &)
— B +&o),

a3 = -B*(1-0)(n+&).

We immediately conclude that for Ry > 1, the coefficients aq is
positive while a; <0 for all cases. The situation for a; and a,
are not as simple.In fact while a; <0 for Ry slightly larger than
unity, it turns to be become positive for Ry >> 1. Finally, we can
proof that the polynomial p3(t) = ag+ ait + a,t% + ast3 satisfies
that p3(0) = ag > 0 and p3(1) = ag + a; + a, + as < 0. This follows
from

p3(1) = —(1 = 0)[d&) +&1B% - 11— ) (1 +d)u?
+(1+1-0)[d&; + Eolp + (1 - 0)[d&: + &0l
~(U+ PN+ D+ d + Sl

It is obvious that p3(1) < 0. Hence, we have shown that p3(t) has

a sign change in the interval 0 < t < 1. Thus, there exist a i* with
0 < i* < 1 such that p3(i*) = 0.

3.5. Existence of a bifurcation

To show the existence of a bifurcation, we let the assumed bi-
furcation parameter be 8 = 8* at Ry = 1. Thus, the bifurcation pa-
rameter, 8*, is obtained as

ﬁ%u+¢ﬂ—9D:1
(m+d)(u+4&) ’

. (mErd)(r+8)
T )

We establish conditions for the existence of backward bifurcation
following Theorem 4.1 proven in Brauer [18]. Let x = (s, n,i, )T
so that model (2) can be restructured as E_f where f=
(f1, fo. f3, f4)T. The crime model (2) becomes

G =MH—us—prsi—¢s=fi,

& = gs— B*(1—O)ni—pn=f.
di _ gesit Br(1— O)ni— —[§0+(.§1 &) & ],_f3, (18)
%= [§0+(§1 &) & ]l*l”—f4
The Jacobian matrix of Eq. (18) at CFE is given as
-n-¢ 0 —p*s 0
J(CFE) = (g 7(# B*s — /;le—;ﬁe}(nl —6)n g (19)
0 0 & —H

Eq. (19) has a a simple eigenvalue implying that the center man-
ifold theory can be used to analyze the dynamics of model (2) at
B = B*. To proceed, we find the right eigenvector of Eq. (19) as

u-¢ 0 —p’s 0| W
¢ -u ~B*(1—0)n 0 ||
0 0 Pps—u-&+p0-6n 0 W3
0 0 & —u ]l
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0
0
=10[, (20)
0
where w = (wy, wp, w3, wy)T is the right eigenvector. Solving for
(wq,wy, w3, wy), we obtained the following results:
B
W= ——-,
YTt e)
wy = B (Ot pud
(U +@)
w3 =1,
3
wy = >,
T

The corresponding left eigenvector is equally obtained from the
transposed Jacobian matrix (19) associated with the zero eigen-
value which is given v = (1, V5, V3, v4)T. Solving for (v, vy, V3, Vs)
yields

v=(0,0.1,0).

Since vy, v, and v4 vanish the second derivatives of fi, f; and f4
do not influence the local behavior close to the bifurcation point.
The local dynamics of model (2) around the equilibrium point is
completely determined by the signs of a and b as established in
Castillo-Chavez and Song [19], Opoku et al. [20]. Computing for a,
the corresponding non-zero partial derivatives of f at the crime-
free equilibrium is given as

*fs  ,. 0°fi L, fs 25 -%) §0)
3501 =P g P00 G =T
Thus,
82 2 82
a= 203w W3 —— 3531 3 1 2uswows 5 23 +v3w§?{3,
= 1/3W3(2,3*W1 + ZWZ,B*(1 —0) +W3@>,
E+ 2(51 - 60) 50)
d
where
E— 2B+ (1 -0)(u+ )+ (1 —0)ug] -0

np +@)?
Therefore we have two conditions

ea<0, ifl:E—t—@ <O],
) if[5+@>o].

Computing for b, the corresponding non-zero partial derivative
of f at the crime-free equilibrium is given as

32 fs 0f3 G _
310 B =s+(1-0)n, naf =(1-6)i*=0
02f3 .
Wﬁ* =i=0.
b=U3W3(5+(1 —9)“),
_ e+ (1-60)
(w+e¢) -~

Thus, b > 0. Hence, we have the following theorem;

Theorem 2. There exist a backward bifurcation at Ry =1 if a>0
and b > 0.
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Fig. 2. Backward bifurcation.

Table 2

Model parameters and their baseline values.
Parameter  Base-line value  Units Reference
B: 0.58 hour~! [24]
e 0.115 hour~!  Assumed
¢: 0.1265 hour-!  Assumed
0: 0.44 hour-!  [24]
d: 5.0 - Assumed
& 0.14 hour-!  Assumed
&o: 0.0015 hour~!  Assumed

We observe that a backward bifurcation occurs at Ry =1.
Hence, the existence of a backward bifurcation is illustrated by the
use of a numerical approach (see Fig. 2) by creating the bifurcation
curve using the values in Table 2 and fixing d=0.1.

From the epidemiological point of view, when a model exhibits
the phenomenon of backward bifurcation [20], it means that the
stable endemic equilibrium may also exist when Ry < 1. When this
happens, it means the reproduction number is no longer suffi-
cient to guarantee crime elimination. Hence, the crime reproduc-
tion number must be reduced under a smaller threshold in order
to avoid multiple endemic states and get crime elimination. The
stability region of the model is related to the value of the param-
eter d. Thus, to obtain a forward bifurcation we set d = 0.2734 to
obtain Fig. 3.

Based on Fig. 3, it implies that crime can be controlled depend-
ing on the length or duration of the event. However, the occur-
rence of a bistability phenomenon when Ry is less than 1 as shown
in Fig. 2 indicate the need for the implementation of other control
measures irrespective of the length or duration of the programme
during an event. As a result, the implementation of other control
measures is introduced in the next section to help achieve crime
elimination.

4. Optimal control problem

In this section, we introduce three control functions cq (t), ¢, (t)
and c3(t) into model (2) to obtain a modified model given as

$=p—(1—cy)Bsi—ps— us,

n=¢s—(1-c)B1—-0)ni—pun,

i=1—c)Bsi+(1-c)B(1—-0)ni
~[e+ (6 - g0) £ ]i- A+ eui

= [So-l—(‘%’l —&) 4 ]i—lﬂ-

d+i
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Fig. 3. Forward bifurcation.

The associated control reproduction number, RS, of Eq. (21) is ob-
tained as

g Bl —c) +¢(1-c)(1-0)]
0 BEYEIIE O

The control function ¢; measures the level of success achieved
in educating people about possible occurrence of criminal acts
during events. This will reduce the intensity of criminals on in-
fluencing susceptible individuals to become criminals. The func-
tion ¢, represents detaining people who are found to be engag-
ing in any criminal activity or behaviour and c3 represents the
effort of sacking anyone with criminal behaviour from the event
premises. Sacking those people will deter others from showing be-
haviour that will breed any criminal activities. It is crucial to know
that if ¢; =cy =c3 =1, then it suggests that the mentioned in-
terventions are 100% effective on attaining the desired goal. But
if ¢; =cy =c3 =0, then it implies that the various interventions
are not effective. Hence, we set up an objective functional, J, con-
sisting M3 > 0 which balances the coefficients of the infected state
variable (i). Considering the following objective functional over a
set of feasible (cy, ¢y, ¢3) interventions between the period [0, ty]
gives

(22)

t . W W. W-
J(cr,¢2,¢3) =/ [M3l+—1c$+—2c§+—3c§]dt, (23)

0 2 2 2
where Wy, W,, W5 are weight constants on the controls. By using
Pontryagin’s Maximum Principle (PMP) [21], the necessary condi-
tions that the optimal controls must satisfy are obtained. There-
fore, model (21) is transformed into an equivalent problem, namely
the problem of minimising the Hamiltonian H with respect to the
given controls. Thus,

. W, Wy, Wa,
H = [M3l t5a+5a+ 7@]
+Aslp — (1 = ¢q) Bsi — s — us]

+Anleps — (1 —c2) B(1 - 0)ni — un]
+Ai[<1 —c)Bsi+ (1-c)B —O)ni

d
d+i

—(504-(51—50) )i—(1+63)ui]

+)»r([5o+ (51 - &) ]i—/U>- (24)

d+i
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Fig. 4. Simulation of model (21) showing the respective costate variables.

The parameters As, An, A; and A, in Eq. (24) are the co - state
variables associated with the state variables (s, n, i, r). Given the
following optimal controls, i, ¢5, ¢4, and state variables, there ex-
ists an adjoint functions satisfying:

= O = 21 = ) (1 = 0)Bi] + A,
=M+ (As = A)[(1 = c1) Bs]

+0m = 2)[(1 = ) Bn(1 - 0)]

+0 = A [0+ (51 = §0) s | + (1 + ),
A= ArlL.

Xs = ()\s - )\i)[(l - Cl),Bi] +)"s(¢ +/’L) _)"H‘P,

N
A
(25)

The following relations were used to derive the adjoint Eq. (25):

dAs JH
dt - ose
dh,  OH
a —  oan’
dv _ oH
dat T 90
dA; oH

dt —  or’

The relevant transversality conditions hold; As(tf) =0, An(ty) =

0, Ai(ty) =0 and Ar(t;) = 0. Furthermore, using g—’c" we obtain,
ngj =Wic; + (As — A Bsi =0,

M = Wacy — (ki — )| B(1 = O)ni] =0, (26)

% =Wsc3 — )\,,/,Ll =0.

Since the optimal controls exhibit the characteristics for ¢} from
% whenever 0 < ¢; < 1, taking the bounds into consideration, we
1
have

¢ (t) = min { max {

0, i _\Azsti}’]}’
0 (,\,»_An)[v(v,jm —G)ni}J},

¢5(t) = min [ max {

. Aili
ct(t) = min{ max {0, =% }1}
10) { max {o. 5
4.1. Numerical results
In this section, we simulate model (21) and the adjoint system

of differential equations with the control characterisation from the
optimal conditions. The optimality systems are solved numerically
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(b) Control profile for c2 # 0 and ¢; = c3 = 0.

Fig. 5. Control profiles for implementing a single control.

using the forward-backward sweep method (FBSM) of which de-
tails concerning it application can be found in [22,23]. For M3 > 0
we used the parameter values in Table 2 and the following val-
ues for the weights and state variables to obtain the numerical re-
sults.

W; =02, W, =02, W3=02, M3 =1, s=0.77,
n=0.03, i=0.15 r=0.05.

We begin by investigating some fundamental properties of
Eq. (24). With our steady states, and since we have finite hori-
zon version, we imposed no conditions on the terminal value of
s(ty), n(tg), i(ty), r(tp). This implies that the relevant transver-
sality conditions As(tf) =0, An(tf) =0, A;(tf) =0, Ar(tf) =0 for
each co-state variable holds. The path in the co-state of the state
variables satisfies the necessary conditions for optimality as shown
in Fig. 4. The path corresponding to each co-state variable de-
creases monotonically reaching As(t;) =0, An(tf) =0, A;i(tf) =
0, Ar(ty) =0 respectively at time (t;) =12 h. This is clearly re-

flected in the respective co-state variables of which our current-
value Hamiltonian is quadratic in crime incidence. This leads to a
shadow cost of crime associated with s(tf), n(ty), and i(ty) ex-
cept for the co-state function of the recovery population, r(tf),
since there is no control on it. These control interventions were
designed such that they minimise the population of criminals dur-
ing an event.

4.1.1. Strategy I: application of a single control

In this subsection, we begin by investigating the effect of ap-
plying a single control and ascertain it effectiveness in reducing
crime during an event. The control profiles for each single control
is shown in Fig. 5. It is prudent to note that for Fig. 5a, the line
graph of ¢, is embedded in that of c5. In a similar manner, the line
graph of cq in Fig. 5b is also embedded in c5. Moreover, in Fig. 5c,
the line graph of ¢; is embedded in c;.

Now, we check the respective single controls on the infected
population to check their effect in reducing crime during events.
Fig. 6a represents the effectiveness of implementing only educa-



N.K.-D. Ohene Opoku, G. Bader and E. Fiatsonu

only education

1.0
0.8 1
C
0
9]
® 0.6 4 — T(t)
; === without control
9 —— with control
[}
£ 0.4
£
021 _oema="T
0.0 T T T T T
0 2 4 6 8 10 12
t (hours)
(a) Effect of education only in control crime.
only sacking
1.0 +
0.8
c
=
9]
© 0.6 A — Tt
“_; —== without control
9 —— with control
O
9 0.4
£
024 _om==7 0
e
0.0 T T T T T
0 2 4 6 8 10 12

t (hours)

(c) Effect of sacking only in control crime.

Chaos, Solitons and Fractals 145 (2021) 110801

only detention

1.0

0.8 1

0.6 1

0.4 1

infected fraction

— T
—== without control

0.2 -/
—— with control

0.0 T T T T T
0 2 4 6 8 10 12

t (hours)

(b) Effect of detention only in control crime.

Fig. 6. Effect of applying a single control intervention on model (21).

tion. It can be observed that when education is applied, the total
number of people in the infected compartment reduces and since
education is such that it does not take people out of the event
premises we observed the total population (T(t) =1) to be con-
stant. Alternatively, we observed that the infected population in-
creases indicated by the blue dotted line when such no interven-
tion is applied. Fig. 6b denotes the effectiveness of applying only
detention as a control measure. It can be seen that the infected
population equally reduces when the control is applied. However,
the total population remain constant indicating that individuals
who exhibit criminal activity are detained for a particular period of
time at the event premises. Moreover, the observed infected popu-
lation grows exponentially if such intervention is not put in place.
Fig. 6¢ also shows the effectiveness of applying the control mea-
sure by sacking individuals with observed criminal behavior from
an event. When we apply only that control the individuals in the
infected population reduces and the infected population increases
without applying the control. Because individuals with criminal be-

haviours are sacked from the event, it reduces the total population,
T(t), starting from the time the control was applied.

4.1.2. Strategy II: application of two controls

In this subsection we investigate the effect of employing two
controls at a time. That is the application of either education and
detention only, education and sacking only or detention and sack-
ing only. Fig. 7 shows the control profiles for these activities.

Fig. 8 a represents the effectiveness of applying both education
and detention at a time. It is seen that these mixed strategies re-
duced the infected population by keeping the total population con-
stant since both interventions do not take people out of the event
premises. Also, Fig. 8b denotes the effectiveness of implementing
both education and sacking. It is observed that the total number of
infected population reduces when these control interventions are
jointly applied. Since some infected population are being sacked,
the total population decreases and infected population increases if
there is no interventions. Finally, Fig. 8c indicates the effectiveness
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Fig. 7. Control profiles for implementing two controls.

of applying both detention and sacking as a control measure dur-
ing an event. These strategies jointly reduce the total number of
infected population and at the same time reduce the total popula-
tion at the event premises.

4.1.3. Strategy III: application of all controls

In this sub - section, we investigate the effect of applying all the
three controls (education, detention and sacking) proposed in the
paper. Fig. 9 shows the control profiles for the control functions
c1 =y = c3 # 0 with regards to the objective function (23). The
numerical simulations here suggest that efforts should be placed
on all the three control functions. However, more attention should
be given to c;, that is education. This is due to the fact that the
control profile c¢; covers the greater portion of the upper bound
of the time horizon and sharply drops to the final time indicating
that ¢; is more effective and a sustainable intervention relative to
¢, and c3 control functions.

Fig. 10 represents the result obtained when we compare the
model with and without controls. It is observed that, the controls

10

have reduced the proportion of criminals causing more proportion
of people to move into the susceptible compartment and some
proportion moving to the “with intention” to commit crime com-
partment as shown in Fig. 10b. The population of infected (crim-
inals) grow exponentially as shown in Fig. 10a but in Fig. 10b, it
decline but never goes to zero. This conformed to the fact that
it is difficult to totally eradicate crime from any event or festive
period. Thus, it is necessary to sustain crime by keeping it at a
minimal level and not to consider it as a situation that can be
totally or fully avoided [8]. Also, the effectiveness of sacking as
a control intervention is seen in Fig. 10b where some individu-
als were taken out of the event causing the total population to
decrease at some particular time. Furthermore, in Fig. 10c, it is
clearly observed that the infected population decreases and ap-
proaches zero when all the control interventions are implemented.
It can further be seen that due to the interventions such as sack-
ing and detaining, the total population reduces from the constant
value of 1.
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Table 3

Computation of the controls basic reproduction number.

Controls Control reproduction number
c1=1,c=0,c5=0 0.6672

¢=0,c=1,c5=0 1.0831

c1=0,c=00c=1 1.2063

cg=1c=1c=0 0.0

cg=1,c=0,c3=1 04560

¢1=0,c=1,c5=1 0.7465

C1:1,C2:1,C3:1 0.0

We further employed the idea in Gervas et al. [25], Opoku
and Afriyie [26] to analyse our result using the control reproduc-
tion number given by Eq. (22) and the parameter values stated in
Table 2 to determine the control reproduction number for each
control that has been administered. Comparatively, it can be ob-
served from Table 3 that implementing only sacking or only de-
tention is not effective compared to implementing only education
as a control strategy. Because the control reproduction number for
sacking only or detention only is given by (1.2062) and (1.08301)
respectively, while the control reproduction number of implement-
ing only education is given by 0.66719. From the basic concept of
epidemiology, a reproduction number less than unity implies that

1

crime can be eradicated from the event while when it is greater
than unity, then it implies crime will persist in the event. We also
observed that the application of two or all the three strategies pro-
vide the best results. This can be seen from the values obtained
from the control basic reproduction number. Hence, it is advisable
for event planners or organisers to implement two or all the con-
trol strategies under consideration during an event but if only one
control strategy is to be applied then it has to do with educating
participants on the awareness of criminal activities.

4.2. Cost effectiveness analysis

Based on the numerical results obtained in Section 4.1 we carry
out the cost benefits attached to the implementation of the three
control strategies. Following the idea in Bala and Zarkin [27,28],
we make use of the incremental cost-effectiveness ratio (ICER) to
determine the most effective cost strategy of the control strategies.
Mathematically, ICER is implemented in the form

Differences in costs of control strategies in i and j
Differences in infections averted by the control strategies in i and j°

(27)

ICER =

Recalling the simulation results of the optimality system and

using the cost function JWjc?, jWhc2 and 3Wsc2 over time, we
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Table 4
Computation of total crime infection averted and its associated cost for each strategies.
Strategy ~ Description TIA Total cost (USD ($))  ICER
11 Education, Detention and Sacking  5016.5 0.57 0.000114
(A) Education and Detention 4941.0 0.41 8.298 x 10>
Il (B) Education and Sacking 4774.01 0.41 8.588 x 10~
(C) Detention and Sacking 4437.0 0.032 7.212 x 10-6
(a) Education 2647.9 0.025 9.441 x 106
| (b) Detention 1904.6 0.016 8.401 x 106
(c) Sacking 1295.1 0.016 9.441 x 106

rank in descending order the intervention strategies showing it as-
sociated total cost (TC) and total infections averted (TIA) for pair-
wise comparison as indicated in Table 4.

From Table 4 we compare the various strategies in order to
know the most cost effective intervention strategy. We begin by
comparing the cost effectiveness of Strategy I(a), I(b) and I(c).

ICER(I(a)) = 9.441 x 1075.

ICER(I(b)) = % —1.2109 x 105,
CERG(e)) = 2016 =006 _

12951 — 19046

We observed that though implementing just a single strategy is
mostly not advisable since it has little effect in eradicating crime,
the cost attached to strategy I(b) was found to be expensive fol-
lowed by strategy I(a). Strategy I(c) was observed to have the least
cost. The result shows that detaining an individual who have com-
mitted a crime or have the intention to commit a crime comes
with the possibility of getting an additional security person to
monitor the behaviour of this individual coming with an additional
cost. However, sacking an individual with a criminal activity comes
with a lesser cost.

In a similar manner, we compare the cost effectiveness of Strat-
egy Il (A, B and C) and III.

ICER(II(A)) = 8.298 x 1075,

0.41 — 0.41
ICERUIB)) = 3521 g 01 =
ICER(II(C)) = % =1.122 x 103,
ICER(III) = % —0.00212.

Comparing the cost of implementing two strategies, we observed
that the most cost effective approach is strategy II(B) while
strategy II(C) is expensive to implement. This has to do with
the fact that in implementing strategy II(C) additional person-
nel is required to successfully implement them. Moreover, we
observe that implementing all three interventions (Strategy III)
at once is the most expensive of all the applied intervention
strategies.

12
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Fig. 10. Effect of applying education, detention and sacking on model (21).

5. Conclusion

In this paper, a mathematical model consisting of four sys-
tems of nonlinear ordinary differential equations is formulated and
used to study the dynamics of the spread of crime during an
event. The threshold (basic reproduction number, Ry) was obtained
which determines whether crime will persist during festive peri-
ods or will die off. The existence and stability of crime-free and
crime endemic equilibrium was analysed. The stability equilibria
switch at the bifurcation point when Ry = 1. Our model (2) ex-
hibits both backward and forward bifurcation depending on the
length of the programme during an event. The requirement that
Rg < 1 is not enough and sufficient for crime elimination. An opti-
mal control problem relative to model (2) was set up to minimise
criminal activities during events. The control reproduction num-
ber was established to ascertain the best approach in minimising
crime. Table 3 depicts the result. The significant discoveries of the
behaviour of our model (21) were numerically checked. Examining
the behaviour of our model without controls were compared with
the model with control interventions to see the effect of these con-
trols on the infected state variable. Furthermore, we investigated
the cost effectiveness to determine the least and most expensive

13

strategies by using ICER. From the pairwise result, we show that,
the combination of education and sacking is the best cost-effective
strategies in terms of cost.
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