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a b s t r a c t 

In this paper, we seek to control crime at its minimal level during festive periods such as Christmas, 

Valentine’s day and entertainment events such as music awards. We used epidemiological-borrowed con- 

cepts to understand and model the dynamics of crime during these periods. We analyze the fundamental 

properties of the model, compute the crime basic reproduction number, R 0 , using the next generation 

matrix approach and use the output to establish the steady states of the model. The crime-free steady 

state is found to be locally stable whenever R 0 < 1 . The center manifold theorem is used to show the 

existence of bifurcation at R 0 = 1 . The model is then transformed into an optimal control problem with 

three control interventions (education, detention and sacking) to obtain the best strategy to control crime 

at its minimum level. The control reproduction number was determined to show scenarios when the im- 

plementation of the controls give an R 0 < 1 or R 0 > 1 . Moreover, numerical simulations are carried out to 

affirm the theoretical properties of the model. From the simulations, education is observed to be the best 

single strategy to apply but, alternatively, incorporating two or more control interventions equally give a 

better result. Finally, cost effectiveness analysis was employed on the control strategies and it shows that 

education and sacking are the most cost-effective strategies to minimise crime during events. 

© 2021 Elsevier Ltd. All rights reserved. 
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. Introduction 

Entertainment events during holidays, festive occasions (such as 

hristmas, Valentine days etc.) are periods that raise problems for 

he general public since criminals see these periods as a chance 

o commit criminal offences. According to [1] , three key elements 

hat constitute a crime; 1 crime as a criminal act (an unlawful bod- 

ly movement where the defendant voluntarily act in a way that 

oses a considerable threat of personal injury or injury to others), 
 crime is taken into account as an omission of acts when some- 

ne fails to perform a duty by law and 

3 crime as a criminal intent

here criminal acts are administered with a culpable mind. Thus, 

he European Union Statistics put crime in six categories which re- 

ect the range of policy and legal systems, that is homicide, violent 

rime, robbery, domestic burglary, theft and drug trafficking [2] . 

Crime has been widely studied as a serious sociological prob- 

em that has been interpreted as bad conduct within the pre- 

cientific period and supported as an ethical or philosophical 
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imension like a violation of discretion. This age of reasoning 

merged in the 1650s to 1800s as exemplified by a priority for 

uman rights leading to its study in the humanities, philoso- 

hy, mathematics and other sciences. The economic revolution, 

owever, brought more conventional thought and reform-oriented 

riminology like classical school seen within the Progressive Era. 

esare Lombroso (1835–1909), the psychiatrist who is recognised 

s the father of forensic science is indelibly marked as the pio- 

eer for the origin and course of theories about biological criminal 

ctivities [3] . Within the late 1990s and early 20 0 0s, a revival of

iosocial ideas as criminal acts have been experienced and viewed 

s a results of biological factors interacting with each other within 

he past and present environments [4,5] . Additionally, the interac- 

ion between genes and therefore the environment relatively af- 

ects anti-social behaviour and shared environmental factors like 

amily crime, poverty, poor parenting which have a significant ef- 

ect on an individual committing a criminal offence, particularly a 

on-aggressive offence [5] . But, early health risk factors like mild 

hysical anomalies, exposure to nicotine or alcohol and complica- 

ions at birth combined with environmental risk factors are also 

een to be predisposed to crime [5,6] . 

https://doi.org/10.1016/j.chaos.2021.110801
http://www.ScienceDirect.com
http://www.elsevier.com/locate/chaos
http://crossmark.crossref.org/dialog/?doi=10.1016/j.chaos.2021.110801&domain=pdf
mailto:nicholas@aims.edu.gh
https://doi.org/10.1016/j.chaos.2021.110801
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a

Consistent with routine activity (RA) theory, different types of 

oliday periods have their associated dominant crime [7] . It has 

een found that major holidays were highly related to expressive 

rimes. As an example, sexual abuse increases during Valentine’s 

ay and theft cases rise around the Christmas Season as well as 

ntertainment events. This is confirmed by the RA which suggested 

hat major holidays or festive periods were more likely to influence 

nd alter the standard daily activities of people as well as bring- 

ng family and friends together in an environment. These gath- 

rings are mostly related to a high level of alcohol consumption 

nd could increase the propensity of one committing a criminal of- 

ence. Consistent with National Insurance Crime Bureau (NICB) re- 

ort in 2018, the subsequent number of daily theft cases that were 

ecorded within the various holidays in the USA are as follows; 

ew Year Day (2571), President Day (2380), Halloween (2275), 

abour Day (2235), Memorial Day (2167), Valentine Day (2001) and 

hristmas Day (1912). Crime does not only affect economic produc- 

ivity but it has a diverse effect on the nation as well. Controlling 

rime considers the very fact that crime may happen at any event 

r festive period. Hence, it is necessary to reduce crime by keeping 

t at a minimal level to avoid it escalating [8] . 

In the study and analysis of crime, some mathematical mod- 

ls have been used. A population-based epidemiological approach 

as utilized in modelling crime, where it was believed that crime 

ould spread through social interaction [9] . Stanford researchers, 

erestycki et al. [10] , used a reaction-diffusion-advection model to 

xplain and reduce the spread of crime waves from crime hotspots. 

riminal behaviours and violence can also be treated as a so- 

ially communicable disease using epidemiological-borrowed con- 

epts [9,11] . These studies recognized the propensity of violent acts 

o cluster, spread and mutate from one area to another and based 

n using existing mathematical epidemiology techniques they have 

een able to treat the spread of violence in a population [11] . 

A similar model for gang growth in a population was de- 

eloped by dividing the population into four distinct categories 

ased on gang affiliation and risk factors for gang membership in 

ooknanan et al. [12] . Their model analyzed the effect of varying 

rime-fighting approaches by adjusting parameter values like im- 

risonment and recurrence levels. They equally establish bifurca- 

ion points that resulted in gang members disappearing from the 

ommunity. Furthermore, Saldana et al. [13] presented a nonlin- 

ar model of urban burglar dynamics which takes into consider- 

tion the police deterrent effect. The predator-prey approach was 

sed where houses served as prey and burglars as predators. Their 

odel focuses on the timing of criminal incidents, the spatial dis- 

ribution of burglaries and population patterns supported by age. 

he burglars’ tendency to commit a criminal offence and the pace 

t which houses were burgled were analyzed using repeat pat- 

erns of victimization. The asymptotic essence of the model to- 

ether with the presence of global equilibrium stability was ob- 

ained through a continuous re-scaling of variable time. However, 

t is assumed in their model that the nature and structure of the 

ouses might be an element that influences the speed at which 

hese houses are going to be burgled but this factor was not con- 

idered. 

Also, Raimundo et al. [14] examined how criminal behaviours 

re often contained and treated using Partially Contagious Crim- 

nality Model (PCCM). Their model include social, economic, per- 

onal and peer-pressure that determined the likelihood that a sus- 

eptible person with criminal propensity will engage in a criminal 

areer. Their model further include individuals who have a criminal 

ropensity but have never been imprisoned, individuals who are 

ulnerable to criminal activity and once jailed and those who are 

ailed several times. The jailed population were; first-timers and 

ultiple times jailed at a given time. Lastly, those who have the 

ropensity to commit a criminal offence but abstained from it ei- 
2 
her by their effort s or early interventions and those who are jailed 

or the primary time or several times but are relieved of criminal 

ehaviours were captured. In their findings, there was an endemic 

quilibrium of criminality even when the essential reproduction 

umber for contagion is below unity. 

From the models reviewed, it is observed that building a crime 

odel involves a multidisciplinary approach to bridging the gap 

etween the physical and social sciences. The perfect sort of labour 

ivision in quantitative social science would be one where the 

ociologist would formulate a theory, mathematician translates it 

nto a mathematical model, statistician vides the models to exhibit 

he parameters and computer scientist performs numerical simu- 

ations [15] . Thus, in this paper we develop a model that seek to 

ontrol crime during entertainment events or festive periods using 

athematical techniques. 

The rest of the paper is organised as follows. In Section 2 , the

odel is formulated and the analysis of the model is presented in 

ection 3 . In Section 4 , the optimal control equations are devel- 

ped and analysed together with the numerical simulations. The 

ection further accounts for the associated cost of controlling the 

rime. Concluding remarks are described in Section 5 . 

. Model formulation 

In this section, the formulation of the crime transmission model 

s made and it classifies the total population of individual in the 

ociety T into four compartments depending on an individual’s 

riminal (infection) status. Compartment labeled S, represent the 

usceptible individuals in the population, N denotes individuals 

ith the intention to commit crime, I account for infected (active 

riminals) individuals and R shows those who have recovered from 

riminal activities. Hence the total population is given by, 

 = S(t) + N(t) + I(t) + R (t) . 

In the model, the influx of individuals are recruited into the 

vent at a rate given by μT . The parameter φ is the rate at which

ndividuals who are recruited into the susceptible population have 

he intention to commit crime. Therefore, individuals with the in- 

ention to commit crime move from the susceptible compartment 

o compartment N. The susceptible and individuals with the in- 

ention to commit crime become criminal at the transmission rate 

and β(1 − θ ) , where θ is the modification of the behaviour of 

hose having the intention to commit crime. Thus, if the value for 

= 1 , then it implies that there is a positive modification of their 

ehaviour. But if θ = 0 , then there is a full transmission from N

ompartment to the I compartment. We further make the assump- 

ion that individuals who are criminals recover through the desis- 

ance rate given by ξ . The desistance rate is a function of the du- 

ation (d > 0) of the programme and the number of infected indi- 

iduals (I) at time t . The desistance function ξ (d, I) , is given by 

(d, I) = 

[ 
ξ0 + 

(
ξ1 − ξ0 

) d 

d + I 

] 
I, 

here ξ0 represents the minimum per capital desistance rate and 

1 is the maximum desistance rate such that ξ1 > ξ0 > 0 . The func- 

ion ξ (d, I) investigates the impact of the duration of the pro- 

ramme on the spread and control of crime. The constant popula- 

ion under consideration in the model is further assumed to have 

 natural exit rate given by μ. A schematic representation of the 

bove model is shown in Fig. 1 and it associated state variables 

nd parameters are described in Table 1 . 

. Model dynamics 

The following set of non-linear ordinary differential equations 

re obtained from the assumptions and flow diagram described in 
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Fig. 1. Schematic figure of crime infection model. 

Table 1 

Description of parameters in the model. 

State variables Description 

S susceptible individuals 

N individuals with intention to commit crime 

I active criminals 

R individuals stopping crime on their own 

T total number of individuals in the society 

Parameters Description 

β transmission rate 

μ rate at which individual exit from an event 

φ rate at which individual with the intention to commit crime 

θ efficacy rate 

d duration or length of an event 

ξ desistance rate 

ξ1 maximum desistance rate 

ξ0 minimum per capita desistance rate 
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ection 2 as; 

 

 

 

 

 

 

 

˙ S = μT − μS − βSI 
T 

− φS, 

˙ N = φS − βNI 
T 

(1 − θ ) − μN, 

˙ I = 

βSI 
T 

+ 

βNI 
T 

(1 − θ ) − μI − ξ (d, I) , 

˙ R = ξ (d, I) − μR, 

(1) 

here the dots on each variables (S, N, I, R ) denote the first deriva-

ive with respect to time t . The initial conditions are such that 

(0) > 0 , N(0) ≥ 0 , I(0) ≥ 0 , R (0) ≥ 0 . From model (1) , we ob-

erve that the dimension of human population is not the same as 

he length of the programme. As a result, to make the system di- 

ensionless, we apply the dimensionless technique and make the 

ollowing substitutions such that; S = sT , N = nT , I = iT , R = rT 

nd d = 

ˆ d T with s + n + i + r = 1 . The new system of equations be-

omes; 

 

 

 

 

 

 

 

 

 

 

 

˙ s = μ − μs − βsi − φs, 

˙ n = φs − β(1 − θ ) ni − μn, 

˙ i = βsi + β(1 − θ ) ni − μi −
[ 
ξ0 + 

(
ξ1 − ξ0 

) ˆ d 
ˆ d + i 

] 
i, 

˙ r = 

[ 
ξ0 + 

(
ξ1 − ξ0 

) ˆ d 
ˆ d + i 

] 
i − μr. 

(2) 

.1. Well-posedness of the model 

In this section, we illustrate that model (2) is sociologically and 

athematically well defined in the positive invariant domain given 
3 
s 

= { (s + n + i + r) ∈ R 

4 
+ ≤ 1 } . 

emma 1 (Positively invariant set) . The region � with initial con- 

itions (s (0) > 0 , n (0) ≥ 0 , i (0) ≥ 0 , r(0) ≥ 0) for all t 0 > 0 is

ounded, positively invariant and attracting with respect to the model 

2) . 

roof. We define 

 0 = sup { t > 0 : s (t) > 0 and (n (t ) , i (t ) , r(t )) ≥ 0 } . 
hus, 

 (t) > 0 and n (t ) , i (t ) , r(t ) ≥ 0 ∀ t ∈ [0 , t 0 ) . 

onsidering the first equation in the model (2) we have: 

ds 

dt 
= μ − μs − βsi − φs, 

≥ −(μ + βi + φ) s, t ∈ [0 , t 0 ) . 

y separation of variables, we have 

ds 

s 
≥ −(μ + βi + φ) dt. 

ow integrating both sides from 0 to t 0 yields; 
 t 0 

0 

ds 

s 
≥
∫ t 0 

0 

−(μ + βi + φ) dt. 

ence we have 

 (t 0 ) ≥ s (0) e 
−
(
μt 0 + φt 0 + 

∫ t 0 
0 

(βidt) 

)
> 0 . 

rom the second equation in model (2) , we can write; 

dn 

dt 
≥ (−β(1 − θ ) i − μ) n t ∈ [0 , t 0 ) . 

y separation of variables we have; 

dn 

n 

≥ [ −β(1 − θ ) i − μ] dt. 

ntegrating both sides from 0 to t 0 gives; ∫ t 0 

0 

dn 

n 

≥
∫ t 0 

0 

(
− β(1 − θ ) i − μ

)
dt, 

n (n (t 0 )) ≥ −μt 0 −
∫ t 0 

0 

(β(1 − θ ) i ) dt. 

herefore, 

 (t 0 ) ≥ n (0) e 

(
−μt 0 −

∫ t 0 
0 

(β(1 −θ ) i ) dt 

)
≥ 0 . 
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n a similar manner, the following solutions are respectively ob- 

ained for the third and fourth equation in model (2) , 

 (t 0 ) ≥ i (0) e −(μ+(ξ1 −ξ0 ) ̂ d / ( ̂  d + i )) t 0 ≥ 0 

nd 

(t 0 ) ≥ r(0) e −μt 0 ≥ 0 . 

herefore, s (t) > 0 , n (t) ≥ 0 , i (t) ≥ 0 , and r(t) ≥ 0 for all time

 0 > 0 . �

.2. Steady states and basic reproduction number 

We obtain two non-negative equilibrium points which are 

rime-free equilibrium (CFE) and crime endemic equilibrium (CEE). 

e obtain the crime-free equilibrium points as; 

F E = (s 0 , n 

0 , i 0 , r 0 ) = 

(
μ

μ + φ
, 

φ

μ + φ
, 0 , 0 

)
. 

.2.1. Basic reproduction number 

The basic reproduction number, R 0 , of model (2) is defined as 

 threshold parameter that measures the average number of new 

riminals produced by the relapse and interaction of the criminal 

opulation with the susceptible population [16] . Using the concept 

n [17] , the basic reproduction number is obtained as 

 0 = 

β( μ + φ( 1 − θ ) ) 

( ξ1 + μ) ( μ + φ) 
. 

.3. Local stability of CFE 

In this section, we investigate the stability analysis of the 

rime-free equilibrium by proving the following theorem. 

heorem 1. The crime-free equilibrium, CF E, is locally asymptotically 

table if R 0 < 1 , otherwise model (2) is unstable. 

roof. The Jacobian matrix for model (2) at CFE is given by 

(CF E) = 

[
A B 

C D 

]
, (3) 

here 

 = 

(
−μ − φ 0 

φ −μ

)
, B = 

( − βμ
(μ+ φ) 

0 

−βφ(1 −θ ) 
(μ+ φ) 

0 

)
, 

 = 

(
0 0 

0 0 

)
, D = 

(
ρ 0 

−ξ1 −μ

)
, 

nd 

= 

(
βμ

(μ+ φ) 
− μ − ξ1 + 

βφ(1 −θ ) 
(μ+ φ) 

)
. 

he eigenvalues for Eq. (3) are given by the diagonal entries of the 

ower triangular of matrix A and D . We therefore deduce that the 

our eigenvalues are: 

• The first and second eigenvalues are given by −μ ≤ 0 . 
• The third eigenvalue is given by −(μ + φ) ≤ 0 . 
• The fourth eigenvalue is given by ρ . 

The condition for the fourth eigenvalue to be negative is such 

hat 

= 

β(μ + φ(1 − θ )) 

μ + φ
− (μ + ξ1 ) < 0 , 

hich simplifies to 

 0 = 

β(μ + φ(1 − θ )) 

(μ + φ)(ξ1 + μ) 
< 1 . 

herefore, the crime-free equilibrium steady state is locally- 
symptotically stable for R 0 < 1 . � a

4 
.4. Crime endemic equilibrium (CEE) 

To find the endemic equilibrium we equate the derivatives of 

odel (2) to zero such that (s ∗ � = 0 , n ∗ � = 0 , i ∗ � = 0 , r ∗ � = 0) to ob-

ain 

 = μ − μs ∗ − βs ∗i ∗ − φs ∗, (4) 

 = φs ∗ − β(1 − θ ) n 

∗i ∗ − μn 

∗, (5) 

 = βs ∗i ∗ + β(1 − θ ) n 

∗i ∗ − μi ∗ − ξ ( ̂  d , i ∗) , (6) 

 = ξ ( ̂  d , i ∗) − μr ∗, (7) 

here η( ̂  d , i ∗) = 

[ 
ξ0 + 

(
ξ1 − ξ0 

) ˆ d 
ˆ d + i ∗

] 
and ξ ( ̂  d , i ∗) = η( ̂  d , i ∗) i ∗. The

ndemic equilibrium point for the state variables obtain as 

 (i ∗) = 

μ

βi ∗ + μ + φ
, (8) 

 (i ∗) = 

μφ

(βi ∗(1 − θ ) + μ)(βi ∗ + μ + φ) 
, (9) 

(i ∗) = 

i ∗(ξ0 i 
∗ + ξ1 

ˆ d ) 

( ̂  d + i ∗) μ

0 = [ βs + β(1 − θ ) n − η( ̂  d , i ∗) − μ] i ∗. (10) 

rom Eq. (10) we have, 

 = βs + β(1 − θ ) n − η( ̂  d , i ∗) − μ, (11) 

hich is equal to 

ξ1 − ξ0 ) 
ˆ d 

ˆ d + i ∗
= βs + β(1 − θ ) n − μ − ξ0 , (12) 

ˆ 
 (ξ1 − ξ0 ) = ( ̂  d + i ∗)[ βs + β(1 − θ ) n − μ − ξ0 ] . (13) 

rom Eqs. (8) and (9) we let; 

 (i ∗) = 

ω 1 

Y 1 
, n (i ∗) = 

ω 2 

Y 1 Y 2 
, 

here ω 1 = μ, Y 1 = βi ∗ + μ + φ, ω 2 = μφ, Y 2 = β(1 − θ ) i ∗ +
. Multiplying Eq. (13) by Y 1 and Y 2 gives 

ˆ 
 (ξ1 − ξ0 ) Y 1 Y 2 = ( ̂  d + i ∗)[ βs ∗ + β(1 − θ ) n 

∗ − μ − ξ0 ] Y 1 Y 2 . (14)

oreover, 

 ̂

 d + i ∗)[ βμY 2 + β(1 − θ ) μφ] − ( ̂  d + i ∗)(μ + ξ0 ) Y 1 Y 2 

= 

ˆ d (ξ1 − ξ0 ) Y 1 Y 2 . (15) 

q. (15) is a polynomial of the form; 

p 3 (i ∗) = a 3 i 
∗3 + a 2 i 

∗2 + a 1 i 
∗ + a 0 , (16)

here; 

 0 = −[(φθ − μ − φ) β + (μ + ξ1 )(μ + φ)] ̂  d μ, 

 1 = − ˆ d μ(θ − 1) β2 + [[(1 + (θ − 2) ̂  d ) μ2 

+ [((φ + ξ1 ) θ − φ − 2 ξ1 ] ̂  d − φ(θ − 1)] μ, 

+ 

ˆ d φξ1 (θ − 1)) β − μ(μ + ξ0 )(μ + φ)] , 

 2 = [(( ̂  d − 1) μ + 

ˆ d ξ1 )(θ − 1) β + ((θ − 2) μ

+ φ(θ − 1))(μ + ξ0 )] β, 

 3 = −β2 (1 − θ )(μ + ξ0 ) . 
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urther simplification and algebraic manipulation, we have; 

 0 = (R 0 − 1)(μ + φ)(μ + ξ1 ) ̂  d μ, 

 1 = β2 ˆ d μ(1 − θ ) − β[( ̂  d − 1) μ2 + 

ˆ d ξ1 μ

+ (1 − θ ) ̂  d μ2 + (1 − θ )[(φ + ξ1 ) μ − ˆ d ξ1 φ]] 

−μ(μ + ξ0 )(μ + φ) . 

 2 = −β(1 − θ )[ β( ̂  d − 1) μ + β ˆ d ξ1 + (μ + φ)(μ + ξ0 )] 

−βμ(μ + ξ0 ) , 

 3 = −β2 (1 − θ )(μ + ξ0 ) . 

e immediately conclude that for R 0 > 1 , the coefficients a 0 is 

ositive while a 3 < 0 for all cases. The situation for a 1 and a 2 
re not as simple.In fact while a 1 < 0 for R 0 slightly larger than

nity, it turns to be become positive for R 0 >> 1 . Finally, we can

roof that the polynomial p 3 (t) = a 0 + a 1 t + a 2 t 
2 + a 3 t 

3 satisfies

hat p 3 (0) = a 0 > 0 and p 3 (1) = a 0 + a 1 + a 2 + a 3 < 0 . This follows

rom 

p 3 (1) = −(1 − θ )[ ̂  d ξ1 + ξ0 ] β
2 − [(1 − θ )(1 + 

ˆ d ) μ2 

+(1 + 1 − θ )[ ̂  d ξ1 + ξ0 ] μ + φ(1 − θ )[ ̂  d ξ1 + ξ0 ]] β

−(μ + φ)[(1 + 

ˆ d ) μ + 

ˆ d ξ1 + ξ0 ] μ. 

t is obvious that p 3 (1) < 0 . Hence, we have shown that p 3 (t) has

 sign change in the interval 0 < t < 1 . Thus, there exist a i ∗ with

 < i ∗ < 1 such that p 3 (i ∗) = 0 . 

.5. Existence of a bifurcation 

To show the existence of a bifurcation, we let the assumed bi- 

urcation parameter be β = β∗ at R 0 = 1 . Thus, the bifurcation pa- 

ameter, β∗, is obtained as 

β∗(μ + φ(1 − θ )) 

(μ + φ)(μ + ξ1 ) 
= 1 , 

∗ = 

( μ + φ) ( μ + ξ1 ) 

( μ + φ( 1 − θ ) ) 
. (17) 

e establish conditions for the existence of backward bifurcation 

ollowing Theorem 4.1 proven in Brauer [18] . Let x = (s, n, i, r) T 

o that model (2) can be restructured as dx 
dt 

= f , where f =
f 1 , f 2 , f 3 , f 4 ) 

T . The crime model (2) becomes 
 

 

 

 

 

 

 

 

 

 

 

 

 

ds 
dt 

= μ − μs − β∗si − φs = f 1 , 
dn 
dt 

= φs − β∗(1 − θ ) ni − μn = f 2 , 

di 
dt 

= β∗si + β∗(1 − θ ) ni − μi −
[ 
ξ0 + 

(
ξ1 − ξ0 

) ˆ d 
ˆ d + i 

] 
i = f 3 , 

dr 
dt 

= 

[ 
ξ0 + 

(
ξ1 − ξ0 

) ˆ d 
ˆ d + i 

] 
i − μr = f 4 . 

(18) 

The Jacobian matrix of Eq. (18) at CFE is given as 

(CF E) = 

⎛ 

⎜ ⎝ 

−μ − φ 0 −β∗s 0 

φ −μ −β∗(1 − θ ) n 0 

0 0 β∗s − μ − ξ1 + β∗(1 − θ ) n 0 

0 0 ξ1 −μ

⎞ 

⎟ ⎠ 

. (19) 

Eq. (19) has a a simple eigenvalue implying that the center man- 

fold theory can be used to analyze the dynamics of model (2) at 

= β∗. To proceed, we find the right eigenvector of Eq. (19) as 

 

 

 

−μ − φ 0 −β∗s 0 

φ −μ −β∗(1 − θ ) n 0 

0 0 β∗s − μ − ξ1 + β∗(1 − θ ) n 0 

0 0 ξ1 −μ

⎤ 

⎥ ⎦ 

⎡ 

⎢ ⎢ ⎣ 

w 1 

w 2 

w 3 

w 4 

⎤ 

⎥ ⎥ ⎦ 
5 
= 

⎡ 

⎢ ⎢ ⎣ 

0 

0 

0 

0 

⎤ 

⎥ ⎥ ⎦ 

, (20) 

here w = (w 1 , w 2 , w 3 , w 4 ) 
T is the right eigenvector. Solving for

w 1 , w 2 , w 3 , w 4 ) , we obtained the following results: 

 1 = − β∗μ
(μ + φ) 2 

, 

 2 = − (μ + φ) 2 β∗(1 − θ ) n + β∗μφ

(μ + φ) 2 μ

 3 = 1 , 

 4 = 

ξ1 

μ
. 

he corresponding left eigenvector is equally obtained from the 

ransposed Jacobian matrix (19) associated with the zero eigen- 

alue which is given v = (v 1 , v 2 , v 3 , v 4 ) T . Solving for (v 1 , v 2 , v 3 , v 4 )
ields 

 = 

(
0 , 0 , 1 , 0) . 

ince v 1 , v 2 and v 4 vanish the second derivatives of f 1 , f 2 and f 4 
o not influence the local behavior close to the bifurcation point. 

he local dynamics of model (2) around the equilibrium point is 

ompletely determined by the signs of a and b as established in 

astillo-Chavez and Song [19] , Opoku et al. [20] . Computing for a , 

he corresponding non-zero partial derivatives of f at the crime- 

ree equilibrium is given as 

∂ 2 f 3 
∂ s∂ i 

= β∗, 
∂ 2 f 3 
∂ n∂ i 

= β∗(1 − θ ) , 
∂ 2 f 3 
∂ i 2 

= 

2(ξ1 − ξ0 ) 

ˆ d 
. 

hus, 

 = 2 v 3 w 1 w 3 
∂ 2 f 3 
∂ s∂ i 

+ 2 v 3 w 2 w 3 
∂ 2 f 3 
∂ n∂ i 

+ v 3 w 

2 
3 

∂ 2 f 3 
∂ i 2 

, 

= v 3 w 3 

(
2 β∗w 1 + 2 w 2 β

∗(1 − θ ) + w 3 
2(ξ1 − ξ0 ) 

ˆ d 

)
, 

= E + 

2(ξ1 − ξ0 ) 

ˆ d 
, 

here 

 = −2 β∗2 [ μ2 + (1 − θ ) 2 (μ + φ) φ + (1 − θ ) μφ] 

μ(μ + φ) 2 
< 0 . 

herefore we have two conditions 

• a < 0 , if 

[ 
E + 

2(ξ1 −ξ0 ) 
ˆ d 

< 0 

] 
, 

• a > 0 , if 

[ 
E + 

2(ξ1 −ξ0 ) 
ˆ d 

> 0 

] 
. 

Computing for b , the corresponding non-zero partial derivative 

f f at the crime-free equilibrium is given as 

∂ 2 f 3 
∂ i∂ β∗ = s + (1 − θ ) n, 

∂ 2 f 3 
∂ n∂ β∗ = (1 − θ ) i ∗ = 0 , 

∂ 2 f 3 
∂ s∂ β∗ = i = 0 . 

 = v 3 w 3 (s + (1 − θ ) n ) , 

= 

μ + (1 − θ ) φ

(μ + φ) 
. 

hus, b > 0 . Hence, we have the following theorem; 

heorem 2. There exist a backward bifurcation at R 0 = 1 if a > 0

nd b > 0 . 
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Fig. 2. Backward bifurcation. 

Table 2 

Model parameters and their baseline values. 

Parameter Base-line value Units Reference 

β : 0.58 hour −1 [24] 

μ : 0.115 hour −1 Assumed 

φ: 0.1265 hour −1 Assumed 

θ : 0.44 hour −1 [24] 
ˆ d : 5 . 0 – Assumed 

ξ1 : 0 . 14 hour −1 Assumed 

ξ0 : 0.0015 hour −1 Assumed 
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Fig. 3. Forward bifurcation. 
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We observe that a backward bifurcation occurs at R 0 = 1 . 

ence, the existence of a backward bifurcation is illustrated by the 

se of a numerical approach (see Fig. 2 ) by creating the bifurcation 

urve using the values in Table 2 and fixing ˆ d = 0 . 1 . 

From the epidemiological point of view, when a model exhibits 

he phenomenon of backward bifurcation [20] , it means that the 

table endemic equilibrium may also exist when R 0 < 1 . When this 

appens, it means the reproduction number is no longer suffi- 

ient to guarantee crime elimination. Hence, the crime reproduc- 

ion number must be reduced under a smaller threshold in order 

o avoid multiple endemic states and get crime elimination. The 

tability region of the model is related to the value of the param- 

ter ˆ d . Thus, to obtain a forward bifurcation we set ˆ d = 0 . 2734 to

btain Fig. 3 . 

Based on Fig. 3 , it implies that crime can be controlled depend- 

ng on the length or duration of the event. However, the occur- 

ence of a bistability phenomenon when R 0 is less than 1 as shown 

n Fig. 2 indicate the need for the implementation of other control 

easures irrespective of the length or duration of the programme 

uring an event. As a result, the implementation of other control 

easures is introduced in the next section to help achieve crime 

limination. 

. Optimal control problem 

In this section, we introduce three control functions c 1 (t) , c 2 (t) 

nd c 3 (t) into model (2) to obtain a modified model given as 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

˙ s = μ − (1 − c 1 ) βsi − φs − μs, 
˙ n = φs − (1 − c 2 ) β(1 − θ ) ni − μn, 

˙ i = (1 − c 1 ) βsi + (1 − c 2 ) β(1 − θ ) ni 

−
[ 
ξ0 + 

(
ξ1 − ξ0 

) ˆ d 
ˆ d + i 

] 
i − (1 + c 3 ) μi, 

˙ r = 

[ 
ξ0 + 

(
ξ1 − ξ0 

) ˆ d 
ˆ d + i 

] 
i − μr. 

⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎬ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎭ 

(21) 
6 
he associated control reproduction number, R c 
0 
, of Eq. (21) is ob- 

ained as 

 

c 
0 = 

β[ μ(1 − c 1 ) + φ(1 − c 2 )(1 − θ )] 

[ ξ1 + μ(1 + c 3 )](μ + φ) 
. (22) 

The control function c 1 measures the level of success achieved 

n educating people about possible occurrence of criminal acts 

uring events. This will reduce the intensity of criminals on in- 

uencing susceptible individuals to become criminals. The func- 

ion c 2 represents detaining people who are found to be engag- 

ng in any criminal activity or behaviour and c 3 represents the 

ffort of sacking anyone with criminal behaviour from the event 

remises. Sacking those people will deter others from showing be- 

aviour that will breed any criminal activities. It is crucial to know 

hat if c 1 = c 2 = c 3 = 1 , then it suggests that the mentioned in-

erventions are 100% effective on attaining the desired goal. But 

f c 1 = c 2 = c 3 = 0 , then it implies that the various interventions

re not effective. Hence, we set up an objective functional, J, con- 

isting M 3 > 0 which balances the coefficients of the infected state 

ariable ( i ). Considering the following objective functional over a 

et of feasible (c 1 , c 2 , c 3 ) interventions between the period [0 , t f ]

ives 

(c 1 , c 2 , c 3 ) = 

∫ t f 

0 

[ 
M 3 i + 

W 1 

2 

c 2 1 + 

W 2 

2 

c 2 2 + 

W 3 

2 

c 2 3 

] 
dt, (23)

here W 1 , W 2 , W 3 are weight constants on the controls. By using 

ontryagin’s Maximum Principle (PMP) [21] , the necessary condi- 

ions that the optimal controls must satisfy are obtained. There- 

ore, model (21) is transformed into an equivalent problem, namely 

he problem of minimising the Hamiltonian H with respect to the 

iven controls. Thus, 

 = 

[ 
M 3 i + 

W 1 

2 

c 2 1 + 

W 2 

2 

c 2 2 + 

W 3 

2 

c 2 3 

] 
+ λs [ μ − (1 − c 1 ) βsi − φs − μs ] 

+ λn [ φs − (1 − c 2 ) β(1 − θ ) ni − μn ] 

+ λi 

[ 
(1 − c 1 ) βsi + (1 − c 2 ) β(1 − θ ) ni 

−
(
ξ0 + 

(
ξ1 − ξ0 

) ˆ d 

ˆ d + i 

)
i − (1 + c 3 ) μi 

] 

+ λr 

([ 
ξ0 + 

(
ξ1 − ξ0 

) ˆ d 

ˆ d + i 

] 
i − μr 

)
. (24) 
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Fig. 4. Simulation of model (21) showing the respective costate variables. 
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The parameters λs , λn , λi and λr in Eq. (24) are the co - state 

ariables associated with the state variables (s, n, i, r) . Given the 

ollowing optimal controls, c ∗1 , c ∗2 , c ∗3 , and state variables, there ex- 

sts an adjoint functions satisfying: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

˙ λs = (λs − λi )[(1 − c 1 ) βi ] + λs (φ + μ) − λn φ, 

˙ λn = (λn − λi )[(1 − c 2 )(1 − θ ) βi ] + λn μ, 

˙ λi = −M 3 + (λs − λi ) 
[
(1 − c 1 ) βs 

]
+(λn − λi ) 

[
(1 − c 2 ) βn (1 − θ ) 

]
+(λi − λr ) 

[
ξ0 + (ξ1 − ξ0 ) 

ˆ d 2 

( ̂  d + i ) 2 
]

+ λi (1 + c 3 ) μ, 

˙ λr = λr μ. 

(25) 

he following relations were used to derive the adjoint Eq. (25) : 

dλs 

dt 
= −∂H 

∂s 
, 

dλn 

dt 
= −∂H 

∂n 

, 

dλi 

dt 
= −∂H 

∂ i 
, 

dλr = −∂H 

. 

dt ∂r 

7 
he relevant transversality conditions hold; λs (t f ) = 0 , λn (t f ) = 

 , λi (t f ) = 0 and λr (t f ) = 0 . Furthermore, using ∂H 
∂c i 

, we obtain, 

 

 

 

∂H 
∂c 1 

= W 1 c 1 + (λs − λi ) βsi = 0 , 

∂H 
∂c 2 

= W 2 c 2 − (λi − λn )[ β(1 − θ ) ni ] = 0 , 

∂H 
∂c 3 

= W 3 c 3 − λi μi = 0 . 

(26) 

Since the optimal controls exhibit the characteristics for c ∗
i 

from 

∂H 
∂c i 

whenever 0 < c i < 1 , taking the bounds into consideration, we 

ave 

 

∗
1 (t) = min 

{ 
max 

{ 
0 , 

(λi − λs ) βsi 

W 1 

} 
, 1 

} 
, 

 

∗
2 (t) = min 

{ 
max 

{ 
0 , 

(λi − λn )[(β(1 − θ ) ni 

W 2 

} 
, 1 

} 
, 

 

∗
3 (t) = min 

{ 
max 

{ 
0 , 

λi μi 

W 3 

} 
, 1 

} 
. 

.1. Numerical results 

In this section, we simulate model (21) and the adjoint system 

f differential equations with the control characterisation from the 

ptimal conditions. The optimality systems are solved numerically 
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Fig. 5. Control profiles for implementing a single control. 
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sing the forward-backward sweep method (FBSM) of which de- 

ails concerning it application can be found in [22,23] . For M 3 > 0

e used the parameter values in Table 2 and the following val- 

es for the weights and state variables to obtain the numerical re- 

ults. 

 1 = 0 . 2 , W 2 = 0 . 2 , W 3 = 0 . 2 , M 3 = 1 , s = 0 . 77 , 

n = 0 . 03 , i = 0 . 15 , r = 0 . 05 . 

We begin by investigating some fundamental properties of 

q. (24) . With our steady states, and since we have finite hori- 

on version, we imposed no conditions on the terminal value of 

 (t f ) , n (t f ) , i (t f ) , r(t f ) . This implies that the relevant transver-

ality conditions λs (t f ) = 0 , λn (t f ) = 0 , λi (t f ) = 0 , λr (t f ) = 0 for

ach co-state variable holds. The path in the co-state of the state 

ariables satisfies the necessary conditions for optimality as shown 

n Fig. 4 . The path corresponding to each co-state variable de- 

reases monotonically reaching λs (t f ) = 0 , λn (t f ) = 0 , λi (t f ) =
 , λr (t f ) = 0 respectively at time (t f ) = 12 h. This is clearly re-
8 
ected in the respective co-state variables of which our current- 

alue Hamiltonian is quadratic in crime incidence. This leads to a 

hadow cost of crime associated with s (t f ) , n (t f ) , and i (t f ) ex-

ept for the co-state function of the recovery population, r(t f ) , 

ince there is no control on it. These control interventions were 

esigned such that they minimise the population of criminals dur- 

ng an event. 

.1.1. Strategy I: application of a single control 

In this subsection, we begin by investigating the effect of ap- 

lying a single control and ascertain it effectiveness in reducing 

rime during an event. The control profiles for each single control 

s shown in Fig. 5 . It is prudent to note that for Fig. 5 a, the line

raph of c 2 is embedded in that of c 3 . In a similar manner, the line

raph of c 1 in Fig. 5 b is also embedded in c 3 . Moreover, in Fig. 5 c,

he line graph of c 1 is embedded in c 2 . 

Now, we check the respective single controls on the infected 

opulation to check their effect in reducing crime during events. 

ig. 6 a represents the effectiveness of implementing only educa- 
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Fig. 6. Effect of applying a single control intervention on model (21) . 
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ion. It can be observed that when education is applied, the total 

umber of people in the infected compartment reduces and since 

ducation is such that it does not take people out of the event 

remises we observed the total population (T (t) = 1) to be con- 

tant. Alternatively, we observed that the infected population in- 

reases indicated by the blue dotted line when such no interven- 

ion is applied. Fig. 6 b denotes the effectiveness of applying only 

etention as a control measure. It can be seen that the infected 

opulation equally reduces when the control is applied. However, 

he total population remain constant indicating that individuals 

ho exhibit criminal activity are detained for a particular period of 

ime at the event premises. Moreover, the observed infected popu- 

ation grows exponentially if such intervention is not put in place. 

ig. 6 c also shows the effectiveness of applying the control mea- 

ure by sacking individuals with observed criminal behavior from 

n event. When we apply only that control the individuals in the 

nfected population reduces and the infected population increases 

ithout applying the control. Because individuals with criminal be- 
t

9 
aviours are sacked from the event, it reduces the total population, 

 (t) , starting from the time the control was applied. 

.1.2. Strategy II: application of two controls 

In this subsection we investigate the effect of employing two 

ontrols at a time. That is the application of either education and 

etention only, education and sacking only or detention and sack- 

ng only. Fig. 7 shows the control profiles for these activities. 

Fig. 8 a represents the effectiveness of applying both education 

nd detention at a time. It is seen that these mixed strategies re- 

uced the infected population by keeping the total population con- 

tant since both interventions do not take people out of the event 

remises. Also, Fig. 8 b denotes the effectiveness of implementing 

oth education and sacking. It is observed that the total number of 

nfected population reduces when these control interventions are 

ointly applied. Since some infected population are being sacked, 

he total population decreases and infected population increases if 

here is no interventions. Finally, Fig. 8 c indicates the effectiveness 



N.K.-D. Ohene Opoku, G. Bader and E. Fiatsonu Chaos, Solitons and Fractals 145 (2021) 110801 

Fig. 7. Control profiles for implementing two controls. 
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f applying both detention and sacking as a control measure dur- 

ng an event. These strategies jointly reduce the total number of 

nfected population and at the same time reduce the total popula- 

ion at the event premises. 

.1.3. Strategy III: application of all controls 

In this sub - section, we investigate the effect of applying all the 

hree controls (education, detention and sacking) proposed in the 

aper. Fig. 9 shows the control profiles for the control functions 

 1 = c 2 = c 3 � = 0 with regards to the objective function (23) . The

umerical simulations here suggest that effort s should be placed 

n all the three control functions. However, more attention should 

e given to c 1 , that is education. This is due to the fact that the

ontrol profile c 1 covers the greater portion of the upper bound 

f the time horizon and sharply drops to the final time indicating 

hat c 1 is more effective and a sustainable intervention relative to 

 2 and c 3 control functions. 

Fig. 10 represents the result obtained when we compare the 

odel with and without controls. It is observed that, the controls 
10 
ave reduced the proportion of criminals causing more proportion 

f people to move into the susceptible compartment and some 

roportion moving to the “with intention” to commit crime com- 

artment as shown in Fig. 10 b. The population of infected (crim- 

nals) grow exponentially as shown in Fig. 10 a but in Fig. 10 b, it

ecline but never goes to zero. This conformed to the fact that 

t is difficult to totally eradicate crime from any event or festive 

eriod. Thus, it is necessary to sustain crime by keeping it at a 

inimal level and not to consider it as a situation that can be 

otally or fully avoided [8] . Also, the effectiveness of sacking as 

 control intervention is seen in Fig. 10 b where some individu- 

ls were taken out of the event causing the total population to 

ecrease at some particular time. Furthermore, in Fig. 10 c, it is 

learly observed that the infected population decreases and ap- 

roaches zero when all the control interventions are implemented. 

t can further be seen that due to the interventions such as sack- 

ng and detaining, the total population reduces from the constant 

alue of 1. 
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Fig. 8. Effect of combining two control interventions on model (21) . 

Table 3 

Computation of the controls basic reproduction number. 

Controls Control reproduction number 

c 1 = 1 , c 2 = 0 , c 3 = 0 0.6672 

c 1 = 0 , c 2 = 1 , c 3 = 0 1.0831 

c 1 = 0 , c 2 = 0 , c 3 = 1 1.2063 

c 1 = 1 , c 2 = 1 , c 3 = 0 0 . 0 

c 1 = 1 , c 2 = 0 , c 3 = 1 0 . 4560 

c 1 = 0 , c 2 = 1 , c 3 = 1 0 . 7465 

c 1 = 1 , c 2 = 1 , c 3 = 1 0 . 0 
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We further employed the idea in Gervas et al. [25] , Opoku 

nd Afriyie [26] to analyse our result using the control reproduc- 

ion number given by Eq. (22) and the parameter values stated in 

able 2 to determine the control reproduction number for each 

ontrol that has been administered. Comparatively, it can be ob- 

erved from Table 3 that implementing only sacking or only de- 

ention is not effective com pared to implementing only education 

s a control strategy. Because the control reproduction number for 

acking only or detention only is given by (1.2062) and (1.08301) 

espectively, while the control reproduction number of implement- 

ng only education is given by 0.66719. From the basic concept of 

pidemiology, a reproduction number less than unity implies that 
11 
rime can be eradicated from the event while when it is greater 

han unity, then it implies crime will persist in the event. We also 

bserved that the application of two or all the three strategies pro- 

ide the best results. This can be seen from the values obtained 

rom the control basic reproduction number. Hence, it is advisable 

or event planners or organisers to implement two or all the con- 

rol strategies under consideration during an event but if only one 

ontrol strategy is to be applied then it has to do with educating 

articipants on the awareness of criminal activities. 

.2. Cost effectiveness analysis 

Based on the numerical results obtained in Section 4.1 we carry 
ut the cost benefits attached to the implementation of the three 
ontrol strategies. Following the idea in Bala and Zarkin [27,28] , 
e make use of the incremental cost-effectiveness ratio (ICER) to 
etermine the most effective cost strategy of the control strategies. 
athematically, ICER is implemented in the form 

CER = 

Differences in costs of control strategies in i and j 

Differences in infections averted by the control strategies in i and j 
. 

(27) 

Recalling the simulation results of the optimality system and 

sing the cost function 

1 W 1 c 
2 , 1 W 2 c 

2 and 

1 W 3 c 
2 over time, we
2 1 2 2 2 3 
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Fig. 9. Control profiles for c 1 = c 2 = c 3 � = 0 . 

Table 4 

Computation of total crime infection averted and its associated cost for each strategies. 

Strategy Description TIA Total cost (USD ($)) ICER 

III Education, Detention and Sacking 5016.5 0.57 0.000114 

(A) Education and Detention 4941.0 0.41 8 . 298 × 10 −5 

II (B) Education and Sacking 4774.01 0.41 8 . 588 × 10 −5 

(C) Detention and Sacking 4437.0 0.032 7 . 212 × 10 −6 

(a) Education 2647.9 0.025 9 . 441 × 10 −6 

I (b) Detention 1904.6 0.016 8 . 401 × 10 −6 

(c) Sacking 1295.1 0.016 9 . 441 × 10 −6 
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ank in descending order the intervention strategies showing it as- 

ociated total cost (TC) and total infections averted (TIA) for pair- 

ise comparison as indicated in Table 4 . 

From Table 4 we compare the various strategies in order to 

now the most cost effective intervention strategy. We begin by 

omparing the cost effectiveness of Strategy I(a ) , I(b) and I(c) . 

 CER (I (a )) = 9 . 441 × 10 

−6 . 

 CER (I (b)) = 

0 . 016 − 0 . 025 

1904 . 6 − 2647 . 9 

= 1 . 2109 × 10 

−5 . 

I CER (I (c)) = 

0 . 016 − 0 . 016 

1295 . 1 − 1904 . 6 

= 0 . 

e observed that though implementing just a single strategy is 

ostly not advisable since it has little effect in eradicating crime, 

he cost attached to strategy I(b) was found to be expensive fol- 

owed by strategy I(a ) . Strategy I(c) was observed to have the least 

ost. The result shows that detaining an individual who have com- 

itted a crime or have the intention to commit a crime comes 

ith the possibility of getting an additional security person to 

onitor the behaviour of this individual coming with an additional 

ost. However, sacking an individual with a criminal activity comes 

ith a lesser cost. 
12 
In a similar manner, we compare the cost effectiveness of Strat- 

gy I I (A, B and C) and I I I . 

 CER (I I (A )) = 8 . 298 × 10 

−5 . 

 CER (I I (B )) = 

0 . 41 − 0 . 41 

4941 − 4774 . 01 

= 0 . 

 CER (I I (C)) = 

0 . 032 − 0 . 41 

4437 − 4474 . 01 

= 1 . 122 × 10 

−3 . 

I CER (I I I ) = 

0 . 41 − 0 . 57 

4941 − 5016 . 5 

= 0 . 00212 . 

omparing the cost of implementing two strategies, we observed 

hat the most cost effective approach is strategy I I (B ) while 

trategy I I (C) is expensive to implement. This has to do with 

he fact that in implementing strategy I I (C) additional person- 

el is required to successfully implement them. Moreover, we 

bserve that implementing all three interventions (Strategy I I I ) 

t once is the most expensive of all the applied intervention 

trategies. 
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Fig. 10. Effect of applying education, detention and sacking on model (21) . 
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. Conclusion 

In this paper, a mathematical model consisting of four sys- 

ems of nonlinear ordinary differential equations is formulated and 

sed to study the dynamics of the spread of crime during an 

vent. The threshold (basic reproduction number, R 0 ) was obtained 

hich determines whether crime will persist during festive peri- 

ds or will die off. The existence and stability of crime-free and 

rime endemic equilibrium was analysed. The stability equilibria 

witch at the bifurcation point when R 0 = 1 . Our model (2) ex-

ibits both backward and forward bifurcation depending on the 

ength of the programme during an event. The requirement that 

 0 < 1 is not enough and sufficient for crime elimination. An opti- 

al control problem relative to model (2) was set up to minimise 

riminal activities during events. The control reproduction num- 

er was established to ascertain the best approach in minimising 

rime. Table 3 depicts the result. The significant discoveries of the 

ehaviour of our model (21) were numerically checked. Examining 

he behaviour of our model without controls were compared with 

he model with control interventions to see the effect of these con- 

rols on the infected state variable. Furthermore, we investigated 

he cost effectiveness to determine the least and most expensive 
p

13 
trategies by using ICER. From the pairwise result, we show that, 

he combination of education and sacking is the best cost-effective 

trategies in terms of cost. 
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